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THE REDUCTION OF STAR SETS

By C. A. ROGERS
University College, London

(Communicated by K. Mahler, F.R.S.—Received 26 September 1951—
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—

;5 > Mahler’s theory of irreducible star bodies is redeveloped and extended in a modified form. It is
O = shown that any closed bounded star set S contains a closed irreducible star set 7" having the same
e E critical determinant. Further, it is shown that, if the first set S is bounded by a finite number of
QO algebraic surfaces, then there will be an irreducible set 7" which is also bounded by a finite number
T @) of algebraic surfaces.

Hwv ‘

1. INTRODUCTION
If4; = (&, ...,aD), ..., 4, = (&, ..., a®) are any linearly independent points in #-dimen-

sional space, the set of all points of the form

w A+ ...t u,d, = (walP+ ... +ud?, . uadP A+ A ua®),
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where uy, ..., u, are arbitrary integers, is called a lattice, the lattice generated by 4,, ..., 4,.
It is well known that, if A is any lattice generated both by the points 4,, ..., 4, and by the
points By, ..., B,, then the corresponding determinants | a{’ |, | 5 | have the same absolute
value; this common absolute value of the determinants is called the determinant of the
lattice and is denoted by d(A). ‘

Mahler (1946 a, 1949) says that a lattice A is ‘admissible’ for a set S, if there is no point
of A, with the possible exception of the origin O, in the interior of §. Mahler defines the
critical determinant of a set S to be the lower bound of the determinants of the lattices
‘admissible’ for S, the critical determinant having the value oo if there are no lattices
admissible for S. Whereas Mahler uses A(S) to denote the critical determinant defined in
this way, we shall denote it by A,,(S).

) §

7~

— J The problem of determining A,,(S) for various sets S is the central problem of the geo-
;5 P metry of numbers. This problem was discussed in detail by Minkowski (1904) in the case
ol when S is a two- or three-dimensional convex region symmetrical in O. General discussions
e of the problem have been given by Mahler (1946 a, ) in the case when S is a star body.f
E O More recently Mahler (1949) has discussed the problem for general sets S.

— 8 Mahler makes a special study of the critical lattices of a set. He defines a critical lattice

of a set S to be a lattice A ‘admissible’ for § with d(A) = A,,(S). In particular, he proves
(Mahler 1949, theorem 2) that, if § contains O as an inner point, and if A,,(S) is finite, then
S has at least one critical lattice.

t For the definition of a star body see Mahler (1946a). It is not difficult to prove that Mahler’s definition
is equivalent to the statement that a star body is a closed set S, such that, if X is a point of S, then all points
of the form AX with |A| <1 are inner points of S.
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60 C. A. ROGERS ON THE

Mahler says that a star body §'is reducible if there is a star body T"with A, (T) = A,,(S)
which is a proper subset of §; otherwise § is irreducible. It is clear that the irreducible star
bodies are of particular interest. Mahler (19464, 1947) proves that they have various special
properties and makes a detailed study of their critical lattices (see also Rogers 19474).

A natural and indeed a fundamental problem in the theory is stated by Mahler (19465,
p. 450) as his ‘

Problem 7. To decide whether every bounded reducible star body contains at least one irreductble star
body of equal determinant.

Mabhler makes the following remark on this problem:

‘It is highly probable that the answer is in the affirmative, and that even a continuous
infinity of irreducible star bodies of the wanted kind exists; but I have not succeeded in
proving this. One reason for this failure is the following fact: If H, K, K,, K,, ... are star

bodies such that AK) = AK) = AK,) = ...,
and K>K,DK,>...0H,

then the star bodies K, tend to a limiting set, namely, their intersection, but this set is not
necessarily a star body. Presumably, a proof will be constructive and will consist of a finite
number of steps....If Problem 7 has an affirmative answer, then only irreducible star bodies
need be considered for most purposes, in so far as bounded star bodies are concerned....
The analogous problem for unbounded star bodies has probably a negative answer; but
again, I have not so far succeeded in proving this.’

We decide this problem in appendix 2 by giving an example of a bounded reducible
star body which contains no irreducible star body of equal determinant. The example
shows clearly that the difficulty mentioned by Mabhler is insuperable as long as we confine
our attention to star bodies. The main object of this paper is to show that, if we admit a
slightly larger class of sets and use slightly modified definitions, we can develop a theory,
very similar to that of Mahler, but in which we can prove the desired result. The proof is
of the type suggested by Mahler; it is constructive and consists of a finite number of steps.

We now explain the way in which we modify Mahler’s theory. A lattice A will be said
to be (strictly) admissiblef for a set S, if there is no point of A, with the possible exception
of 0, in S. The lower bound of the determinants d(A) of the lattices A (strictly) admissible
for a set S will be called the (modified) critical determinant of § and will be denoted by
A(S), the value of A(S) being oo if there are no such lattices. Comparing these definitions
with those of Mahler, it is plain that A(S) = A,,(S) if §'is open; further, this equality also
holds when §'is a star body, since then

A (S) < AS) < Ay((146) S) = (146)* Ay (S)

for any positive e. However, in appendix 1 we give some examples of sets of points for which
Ay (S) <A(S). There is certainly a very close connexion between the functionals Aand A,,.
It is clear that A, (S) = A(S,), where S, is the set of inner points of S. On the other hand, it

is easy to see that A(S) = infA,,(T) = infA(T),
T T

1 The term °(strictly) admissible’ is used in the introduction to avoid confusion with Mahler’s ter-
minology; in the later sections the parenthesized adverb will be omitted.
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REDUCTION OF STAR SETS 61

the lower bound being taken over all open sets 7" containing S; since, if A is a lattice which is
(strictly) admissible for S, then the set 7" of all points of the space, which are not points
other than O of A, is an open set containing S with

A(S) < Ay(T) = A(T) = d(A).

A lattice A will be called a critical lattice of § if d(A) = A(S) and A is the limit lattice of
a convergent sequencet of lattices AD, A®, ..., all (strictly) admissible for S. Note that if
d(A) = A(S) and A is (strictly) admissible for .S, then A is, according to this definition, a
critical lattice of S, since then all the lattices A®, A®, ... may be taken to coincide with A.
It is clear that this definition is equivalent to that of Mahler when S is open and also when
$§'is a star body. Mahler has proved a number of important theorems concerning the critical
lattices of a set. In §3 of this paper we use Mahler’s methods to show that some of these
results have close analogues when our definitions are used in place of his.

We use the word ‘reducible’ in a slightly wider sense than that used by Mahler. A set
S will be said to be reducible to a set 7, if T'is a proper subset of S and A(T") = A(S). Aset
$ will be said to be reducible among a class of sets when S can be reduced to a set 7" in the
class; and, conversely, S will be said to be irreducible among the class of sets when there
isnoset 7 of the class to which § may be reduced. In this terminology it is clear that Mahler
confines his attention to the process of reduction among the star bodies. We shall be con-
cerned in this paper with the processes of reduction among the star sets and among the
proper star sets. By a star set we shall understand a set S of points, which is closed, and which
has the property that if X is any point of S then the point 1.X also belongs to S for —1<A<1.
We shall call a star set S proper, if it is the closure of the set of its inner points, and if it
contains O as an inner point. In §4 we obtain some results analogous to the results of
Mabhler for reduction among the star bodies. In addition, we prove the following result,
having no analogue in Mahler’s theory.

THEOREM 7. Let S be any bounded star set with A(S)>0. If S is reducible among the star sets,
then S can be reduced to a proper star set T which is irreducible among the star sets.

While this theorem provides a fairly complete solution of the problem of Mahler quoted
above, there is a sense in which the theorem has the disadvantage of being too general.
There is little or no point in starting with a set S bounded by an algebraic surface and
reducing it to a set which may be bounded by a highly pathological surface. In § 5 we give
the phrase ‘a closed set bounded by a finite number of algebraic surfaces’ a precise meaning,
and call such a set an algebraic complex. We prove the following theorem:

THEOREM 12. Let § be a proper bounded star set, which is also an algebraic complex, and which
is reductble among the star sets. Then S can be reduced to a proper star set T, which is an algebraic
complex, and which is irreducible among the star sets.

Examples of non-convex irreducible two-dimensional star domains] have been given
by Mabhler (1944, 19465, §7), Ollerenshaw (19454, §7) and Cassels (1947). All these
examples are of star domains bounded by a finite number of algebraic curves. I know of
no example of a non-convex irreducible three-dimensional star body. But by applying
theorem 12 to known results we have the following existence theorem:

T See Mahler (19464) or §2 below.
1 A star domain is a two-dimensional star body.
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62 C. A. ROGERS ON THE

TueoreM 13. The star bodies S, ..., Sg, defined by the inequalities shown in table 1 have the
critical determinants stated. For r = 1,...,6 the body S, contains a proper bounded star set T,,
which is an algebraic complex, which is irreducible among the star sets, and which is such that

A(T,) = A(S,).

TABLE 1

critical dimension
body defining inequalities determinant of space
s, [+ Ly ] <1 s 3
Sy EEXARY! 7 3
Ss [ (x5 +43) | <1 Vi3 3
S, |3+ x3— 3] <1 3 3
S, |3 2| <1 Ji 4
S |+ —23| <1 g "

An explicit construction for any of the star sets 77, ..., 7%, whose existence is established
in theorem 13, would be of considerable interest. Work of Davenport (1941) suggests that
T, may possibly be the region defined by

EREARS
(% —25)% 4 (3~ )2+ (xl‘x2)2<145}
while work of Mullineux (1951) suggests that 7 may possibly be the region defined by
| #f a3 —xf | <1,
|5 [ <2

When one considers convex star bodies, the results provided by theorems 7 and 12 leave
much to be desired. One is loath to replace a convex body by a non-convex set and is
interested in reducing a bounded convex star body, if possible, to a star body which is both
convex and irreducible among the star bodies. In the two-dimensional case Mahler (1947)
has given a characterization of all convex irreducible star domains and has proved the
fundamental theorem that every two-dimensional convex star domain K contains an irreducible
convex- star domain H (not necessarily different from K) with A(H) = A(K). I hope to prove in
another paper by a refinement of Mahler’s methods that, if the original convex star domain K
is bounded by a finite number of algebraic arcs, then the irreducible convex star domain H can always be
chosen so that it is also bounded by a finite number of algebraic arcs. But the problem of generalizing
Mabhler’s result to more dimensions seems to be difficult. It is easy to prove by Mahler’s
methods that every convex star body K contains a convex star body H, which is irreducible among the
convex star bodies ; but I do not see how to prove (as is necessary) that every convex star body
H, which is irreducible among the convex star bodies, is also irreducible among the star
bodies.

2. LATTICES

We first summarize certain definitions and results of Mahler (19464). A sequence of
lattices A;, A,, ... is said to be bounded, if the sequence of determinants d(A;), d(A,), ... is
bounded, and there is a number ¢>> 0 such that for r = 1, 2, ... there is no point X other than
O of A, satisfying | X |<e¢ (Mahler 19464, definition 1). Here | X | denotes, as usual, the
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REDUCTION OF STAR SETS 63

distance of X from O. A sequence of lattices A;, A,, ... is said to converget to a limit lattice A,
if it is possible to find points 4, ..., 4, generating A and points 4{, ..., 4% generating A,,
for r = 1,2,..., such that A§’)—>Az- (z: 1’.”,72)

as r—>00. It follows immediately from this definition that, if the sequence of lattices A, A,, ...

converges to the lattice A, then d(A,)—d(A) as r—co. Mahler (19464, theorem 2) proves the

fundamental theorem that every bounded sequence of lattices contains a convergent subsequence.
The following lemma is implicit in Mahler’s work (19464, the proof of theorem 19):
LemMA 1. Let Xy, ..., X, be points generating a lattice A, and satisfying | X, | <M forr =1, ...,n.

If uy, ..., u, are any integers and X=uX,+...+uX (1)
v tu, X,
n—1
then l”r‘<4/€7(‘/{%l Jorr=1,...,n (2)

Proof. The determinant of the lattice generated by the points
X X 3 X, X 10 X,

n
is | 4| d(A). But by Hadamard’s inequality this determinant is less than or equal to
X oo | Xy [ X Ky || Ko
Hence |u, | d(A) <M1 X|,
so that (2) is satisfied.
Our next lemma is a simple consequence of lemma 1; again it is implicit in Mahler’s
work (19464, the proof of theorem 19).
LemMA 2. Let X,, ..., X, be linearly independent points; let R and e be positwe numbers. Then
there exists a positive number 5 with the following property. For all points Y, ..., Y, with
|Xr—‘le<77 (721,...,7l), (3)
and for all integers uy, ..., u,, if the points '
X=uX,+...+u,X,,
Y=u Y +..4u, Yn,}
satisfy either | X | <R or | Y| <R, then | X—Y | <e.
Proof. Let A be the lattice generated by the points X, ..., X,. Let M be so large that
| X, |<iM, forr=1,...,n.

(4)

Choose 7 satisfying 0<p<iM, (5)
d(A)
T <Ga(al) A (6)
ed(A)
and n <W- . (7)
Let Y}, ..., Y, be any points satisfying (3) and let A’ be the lattice generated by these points.
Then |Y,|<M, forr=1,...,n,

and it is easy to verify, by use of (6), that
d(N)>d(A)—Jd(A) = Jd(A).

T Although this definition of convergence is not identical with that of Mahler (19464, definition 2), it is
easily seen to be equivalent to his definition. .
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64 C. A. ROGERS ON THE

Now suppose that u,, ..., u, are any integers. First suppose that the point Y given by (4)
satisfies | ¥ | <R. Then by lemma 1
lu | <RM"‘1<2RM""1
AN T dA)

forr=1,...,n. Consequently
n . n—1
| X-Y|< 3 [u].| X7, < 22Y
r=1

#*d(A) n<e,

onusing (7). If| X | <R, the same argument (with the roles of X and Y interchanged) shows
that | X— Y | <e. This proves the lemma.

The next lemma provides an alternative definition for the convergence of a sequence of
lattices; it is deduced from lemma 2 using methods due to Mahler (see Mahler 19464,
the proof of theorems 18 and 19).

LemMmA 3. The sequence of lattices Ay, A, ... converges to the limit lattice A, if, and only if, both

(a) each point of A is the limit point of a convergent sequence of points X, X,, ... belonging respec-
twely to Ay, A\, ..., and

(b) each limit point of each sequence of points X, X,, ... belonging respectively to A}, A, ... is
a point of A.

Progf. Suppose that the lattices A}, A,, ... converge to the lattice A. Then it is possible to
find points 4, ..., 4, generating A and points 4, ..., A7 generating A,, for r = 1,2, ...,

such that AP S A G =1,...,n)
as r—>00. So, if X = u;4,+...+u,A, is any point of A, the point
X, = AP+ ... +u, AP
of A, converges to X as r tends to infinity. On the other hand, if the point
X, =uPAP+ ... 4 uPAD

of A, converges to a point X as r tends to infinity through a strictly increasing sequence of
positive integers, then by lemma 2 it is clear that the corresponding point

Y, = uPA; + ... +uPA,

of Aalso converges to X as 7 tends to infinity through the sequence of positive integers, so that
Xisin A as A is closed. Thus the conditions (a) and (b) are both satisfied.

Suppose that the condition (a) is satisfied. Then we can choose points 4,, ..., 4, generating
A and points 4, ..., AP of A,, for r = 1,2, ..., such that

AP s A, (i=1,...,n)

as r—>00. Let us suppose that the sequence of lattices A}, A,, ... does not converge to the
lattice A. Then it is clear that we can choose a strictly increasing sequence 7,7, ... of
positive integers such that for 7 = r},7,, ... the points A{’, ..., A are not a basis for A,. It
is clear that when 7 is sufficiently large the points Ay, ..., A will be linearly independent.
So we may suppose that A{, ..., A? are linearly independent for 7 = r,,7,, .... Then for
these values of r we can find a point

Xr — ﬂ(lr) A(lr) +... _,_qulr) Aslr)
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REDUCTION OF STAR SETS 65
of A,, for which 4, ..., 4 are not all integers. By replacing X, by a point of the form
X, —upP AP — ... —uP AD,

where u{”, ..., 4" are integers, we may suppose that
1
O<max{|4|, ..., |47 [}<3.

By replacing the new point X, by a point of the form 2/X,, where ¢ is an integer, we may
suppose that

PP F<max (|4, - |49 <4,
By replacing the sequence 7, 7,, ... by a subsequence of itself, we may suppose that

U —>p (1=1,...,n)
as r—0o0 through the subsequence. Then

t<max{|p |, .oy | 1, [}<3,s (8)

and the point X, of A, converges to the point
X=mA +...+u,4,

as r—o0 through the subsequence. But it is clear from (8) that X is not a point of A. Thus the
condition (4) is not satisfied. Hence if the conditions (a) and (4) are both satisfied it follows
that the sequence A, A,, ... converges to A. This completes the proof of the lemma.

3. CRITICAL LATTICES

In this section we use the definitions of the introduction and by application of Mahler’s
methods we prove three theorems about critical lattices, which are analogous to the results
Mabhler has proved using his definitions. If.$'is any set we use S to denote the set formed by

adding the origin O to the union © 1
u =S (9)

m=-—0o0 m
m=+0

Our firstresultis a refinement of results of Mahler (1946 a, theorem 8, and 1949, theorem 2).
TuroreM 1. Let S be any set with A(S) < +c0. If O is an inner point of S, then S has at least one
critical lattice. o
" Proof. As A(S)< +o0, there is at least one lattice admissible for §. It is clear from the
definition of A(S) that we can choose a sequence of lattices A;, A,, ... (not necessarily dis-
tinct) such that A, is admissible for § (r = 1,2, ...), and such that d(A,) > A(S) as r—oo0.
On the supposition that O is an inner point of S, we can choose p > 0 so small that the sphere

| X|<p (10)

is contained in S. If X were any point, other than O, of A, in the sphere (10), then X would
be in the set (9), and so for some integer m == 0 the point mX would be in §. As A, is admissible
for S, it follows that there is no point of A,, except O, in the sphere (10). Thus the sequence
of lattices A;, A,, ... is bounded. So by a fundamental result of Mahler, stated in § 2 above,
the lattice A, will converge to some lattice A* as 7 tends to infinity through a suitable
sequence 7y, 7,, ... of positive integers. Since d(A,) —d(A*) as r tends to infinity through this
subsequence, we see that d(A*) = A(S). Thus A* is a critical lattice of S and the theorem
is proved.
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Before we prove our next resultitis convenient to obtain the following elementary lemma:
Lemma 4. If R>0, A>0 and A is a point with

0<| 4] <pr
there is a lattice A with d(A) <A, having A as a laitice point, and such that the only points of A in the
sphere | X | <R are of the form mA, where m = 0, +1, -2, ....
Proof. By the spherical symmetry we may suppose without loss of generality that A4 is
the point with co-ordinates (4,0, ...,0), where 0<<a<<A/R*~!. Then it is clear that the
lattice A generated by the points

(a, 0, ..., 0),
(0, R, ..., 0),
(09 Oa . >R)a

has the required properties.

The following result is a refinement of another result of Mahler (1949, theorem 3):

THEOREM 2. Let S be a bounded set. Then A(S) is finite. Further

(a) S has at least one critical lattice if and only tf A(S) >0, and

(6) A(S) >0 if and only if O is an inner point of S.

Proof. As S is bounded it is trivial that there are lattices admissible for S, so that A(S) is
finite. In order to prove (@) and (b) it clearly suffices, in view of theorem 1, to prove the
following two auxiliary results.

(i) If S has a critical lattice, then A(S) > 0.

(ii) IfA(S) >0, then O is an inner point of .

To prove (i) we note that, if A is a critical lattice of S, then A(S) = d(A) > 0.

To prove (ii) suppose that A(S) >0, while O is not an inner point of §. Choose R so large
that each point X of § satisfies | X | <R. Choose a point 4 with

A(S)

which is not in . Then none of the points of the form
m4d (m=41,+2,...),

are in S. So it follows by lemma 4 that there is a lattice A with d(A) <A(S) with no point,
except perhaps O, in §. This contradiction to the definition of A(S) proves (ii).

The last result of this section is a generalization of a result which is well known for bounded
star bodies (see Mahler 19464, theorem 11).

THEOREM 3. If Ais acritical lattice of a bounded set S, then there are n linearly independent points
of A on the boundary of S.

Proof. Let a be the smallest linear manifold containing O and the points (if any) of A
on the boundary of §. We suppose that the dimension £ of « is less than 7 and obtain a con-
tradiction. Choose points X}, ..., X, generating A so that the points X, ..., X, (if £>1)
generate all the points of A lying in «.

As A is a critical lattice of S, it is the limit of a sequence of lattices A;, A,, ..., admissible
for S. So by lemma 3 for r = 1,2, ... we can choose points X{”, ..., X’ of A, such that

XP—>X, asr—oo
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REDUCTION OF STAR SETS 67
fori=1,...,,n Since X, ..., X, generate A and
d(A,)>d(A) asr—oo,

it is clear that X\, ..., X generate A,, if r is sufficiently large.

Choose R so large that all the points X of S satisfy | X | <R. Now there are only a finite
number of points, 4,, ..., 4,, say, of A, which are in the sphere | X | <R+ 1, but which are
not in «. These points are not on the boundary of S. So we can choose ¢, with 0 <<e<(1, so
small that for every point X of § we have

| X—A4,|>¢, forr=1,..,1. (11)
By lemma 2 we can choose a number 7> 0 so small that, for all points Z,, ..., Z, with
| X—Z| <2y (i=1,...m),
and for all integers 4, ..., u,, if the points
X=u X\ +...+u,X,

Z—uZ ...+ u,Z,
satisfy | Z| <R, then | X—Z| <e.

Choose M so large that | X,|<M, fori=1,...,n.
Now by taking r sufficiently large and by writing
Y, =X, ..,Y, =X,
we can find points Y}, ..., ¥,,, generating a lattice A’ admissible for S, such that

| X,—Y;|<ny, fori=1,...,n,

and d(A")<d(A) (1+8)"%,
' 7
where 0= Ve
Write Z,=Y,.,2,=Y,2Z,,,=(1-0)Y,,,,...,Z,=(1-0) 7Y,

Then, for : =1, ...,n,
| Z,— X | <| Y= X [+ 0| X; [ <n+d(M+7n) = 27.
Further, if A* is the lattice generated by the points Z, ..., Z,, we have
d(A*) = (1=0)"*d(N') < (1—02)**d(A) <d(A) = A(S). (12)
Now consider any lattice point
Z=uZ+...+u,Z,
of A* and the corresponding points

X=u X +...+u,lX

Y:u1Y1+...+unYn

of Aand A'. If | Z| >R, the point Z is certainly not in S. If | Z| <R, we have | Z—X| <¢
by our choice of 5. Ifu,.,, ..., u, are not all zero, Xis not in « and satisfies | X | <R+e<R+1,
and so X is one of the points 4, ..., 4,. In this case it follows by (11) that Zis not in §. If

VoL. 245. A. ‘ 9
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68 C. A. ROGERS ON THE

Uy, = ... = u, = 0, then Z coincides with the point ¥ of A’, and so, as A’ is admissible
for S, the point Z can only be in § if it coincides with O. This shows that A* is admissible
for S. Now (12) is contrary to the definition of A(S). This contradiction proves the theorem.

4. IRREDUCIBILITY AMONG THE STAR SETS AND AMONG THE PROPER STAR SETS

We recall that a star set §'is a set which is closed, and which has the property that if
X'is any point of §' then the point X also belongs to §'for —1<<A<1. Further, a proper star
set §'is a star set which contains O as an inner point, and which is the closure of its set of
inner points. Again a star body ' is a closed set, which has the property that, if X is a point
of S, then all points of the form AX with —1 <A< 1 are inner points of §. Clearly a star body
is a proper star set and a proper star set is a star set. Example 3 of appendix 1 is an example
of a proper star set which is not a star body, while example 2 of that appendix is an example
of a star set which is not a proper star set. ~

In this section we consider the processes of reduction among the star sets and among

 the proper star sets. We need three definitions.

DErintTION 1. A point X of a set S is said to be a primitively irreducible point if X is a point of
a lattice A with d(\) <A(S) such that the only points of A in S are of the form

mX, wherem =0, +1,-+2, ...

DEeFINITION 2.1 A point X of a set S'is said to be an irreducible point of X is primitively irreducible
or if X is a limit point of primitively irreducible points.

DEerINITION 3. A4 point X of a set S is said to be an outer boundary point of S if, for all numbers
A>1, the point AX is not in S.

Although these definitions have been stated for an arbitrary set .S, we shall confine our
attention in the sequel to star sets; indeed it is probable that these definitions are only
appropriate in this case.

We need two lemmas. The first is a simple consequence of our definitions.

LemwmA 5. Let S be any set and let T be any star set, which is contained in S, and which has the same
critical determinant as S. Then T contains every irreducible point of S and every such point is an irre-
ductble point of T.

Proof. Let X, be any primitively irreducible point of S. Then there is a lattice A with

} d(A) <A(S) =A(T)
such that the only points'of Ain S are of the form
| mX,, wherem=0,-+1,-+2,....
Since 7'is a star set contained in § with A(7") >d(A) it follows that X, must be in 7. So
we see that X, is a primitively irreducible point of 7. As T is closed it follows that every

irreducible point of S is an irreducible point of 7.

The second lemma is proved by a method I have used to prove a rather similar lemma
(Rogers 1947a).

LemMa 6. Let T be a star set properly contained in a proper star set S with A(S) < +-oo. Then
there is an outer boundary point of S which is not in T.

1 This definition of an irreducible point differs from another definition I have used (Rogers 19474a);
the definitions are equivalent in the case when S is a star body and X is a boundary point of S.
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REDUCTION OF STAR SETS 69

Proof. We suppose that every outer boundary point of .S belongs to 7" and we obtain a
contradiction. As 7"is properly contained in S there is a point X, of § which is notin 7". As
T 'is closed there is a whole sphere with centre X; which contains no point of 7. As S is the
closure of its interior, there is an inner point X, of S in the interior of this sphere with centre
X,. So, if >0 is sufficiently small, the sphere

| XX, |<e (13)

is contained in S but contains no point of 7.

Let X be any point in the sphere (13); it is in .§ but not in 7. If for some positive A the
point X is not in S, then for some y# with 1 <x<A the point X is an outer boundary point
of § which is not in 7. This is contrary to our original supposition. Hence for every positive
A the point AX is in §. Thus for all positive A the set .S contains the sphere of points ¥ = 1X

satisfying | Y—AX, | <Ae. (14)

But if Ais any lattice, A can be chosen so large that the sphere given by (14) contains a point
other than O of A. Consequently there is no lattice which is admissible for S, and so
A(S) = +o00. This contradiction of our hypotheses proves the lemma.

We use these two lemmas to prove the following theorem, analogous to one of my previous
theorems (19474, theorem 1), giving a necessary and sufficient condition for a proper star
set to be irreducible among the star sets or among the proper star sets:

THEOREM 4. Let S be a proper star set with A(S) < +oco. Then

(a) S'is irreducible among the proper star sets if and only if every outer boundary point of S is
irreducible; and : '

(b) S us irreducible among the star sets if and only if every outer boundary point of S is irreducible.

Proof. 1t clearly suffices to prove the following three auxiliary results:

(i) If every outer boundary point of § is irreducible, then S is irreducible among the
star sets. ‘

(i1) If S is irreducible among the star sets, then § is irreducible among the proper star
sets. ,

(iii) If S is irreducible among the proper star sets, every outer boundary point of S is
irreducible.

To prove (i) we suppose that every outer boundary point of S is irreducible but that .§
can be reduced to a star set 7, and we obtain a contradiction. It follows from lemma 6
that there is an outer boundary point X, say, of § which is not in 7. Now X is an irre-
ducible point of S, and so it follows by lemma 5 that A(7") <A(S), contrary to our supposition
that S could be reduced to 7" This proves (i).

The result (ii) follows immediately from the definitions.

To prove (iii) we suppose that §'is irreducible among the proper star sets, and we consider
an arbitrary outer boundary point X; of S. As S contains O as an inner point, we can choose
a number J, satisfying 0<<d <1, so small that § contains the set of all points X with

| X[<8] X, |- | |
Since the point (1+ £J) X, is not in the closed set .S, we can choose a number 7, with 0 <<y < 19,
so small that there is no point X of § satisfying both
| X[=(1+19) [ X, |
9-2
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X X,
and e — 0 <,
T
Let 7|, be the set of all inner points X of .S, which satisfy either
| X|<(1—39) IX l
X X,
or e
‘ XX

for both signs. Let 7" be the closure of the open set 7. Then 7 is a proper star set properly
contained in §. Thus, as § is irreducible among the proper star sets, we have A(7T") <A(S).
Consequently there is a lattice A admissible for 7" with d(A) <A(S). Since d(A)<A(S)
there is a point X, other than O of Ain §. As A is admissible for 7, the point X] is not in
the closure 7" of 7}. But, since S is a proper star set, X, is a limit point of inner points of S.
This X, is a limit point of inner points of ' which do not belong to 7. Hence Xj is a limit
point of points X satisfying both 1 X|>(1—10) | X, |

and f X X

Tl S

PPl

for some sign. It follows that there is a point X, = 4 X, of A in S satisfying both
| Xz [ = (1—40) | X |

AR ol

and

By our choice of 7, we must have
(1=10) [ Xo | <[ Xy [ < (1+19) [ X, |-

Now, using the last two inequalities,

X, X, . |X|-|X
ol =1 sxzmxoﬁ’lxlf !’XOIIXI
X, X
<0+10) | Kol <101 Xl (15)

Similarly, if X; were any point of A in § other than O and 4 X, there would be a point
X, = + X, of A other than O and -+ X, in S satisfying

| Xy—Xo | <30] X |-
But then the point X = X, — X, would be a point other than O of A, satisfying
| X5 | = | X,— X, | <0 &, |,

and so would be a point other than O of Ain 7. This is impossible as A is admissible for 7.
Hence the only points of A in .§ are the points —X,, O and X,, while d(A) <A(S). Thus the
point X, is a primitively irreducible point of § satisfying (15). Since § and 7 may be taken
to be arbitrarily small, it follows that X, being a limit point of primitively irreducible
points X, of S, is an irreducible point of S. This proves (iii) and completes the proof of the
theorem.
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REDUCTION OF STAR SETS 71

COROLLARY 1. Let S be a star body with A(S) <+ co. Then S is irreducible among the star bodies
if and only if 1t is irreducible among the star sets or the proper star sets.

Proof. The result follows by the theorem and theorem 1 of Rogers (1947 a) using the
equivalence for star bodies of the present definitions with those adopted there.

COROLLARY 2. Let S be a star set with A(S) < + 00, containing O as an inner point. If S is irre-
ducible among the star sets then every outer boundary point of S us irreducible.

Progf. This corollary can easily be proved by the method used to prove the auxiliary
result (iii) in the proof of theorem 4. The modifications that are necessary are obvious
simplifications; it is no longer necessary to ensure that 7" is a proper star set.

We next want to prove a result analogous to one of Mahler (19466, theorem C) on the
critical lattices of an irreducible star body. But first we prove the following lemma:

LemmaA 7. Let S be a star set with A(S) < 400, containing O as an inner point. Let X, be any vrre-
ducible outer boundary point of S. Then there is a critical lattice A of S having X, as a lattice point.

Proof. Since X, is an outer boundary point of S it is clear that, for each positive integer /,

the point 111 ¥
e
is not a point of the closed set S, so that for a suitable ¢ = ¢ with 0 <e<1// there will be no

point X of § satisfying [+1
|

| X=X

____.XL
| X X

Since X, is an irreducible point of S, there is a primitively irreducible point X; of S satisfying

and <E.

1 X, |— 1X0H<,1Xox
X, X
d _.J_._*..L<.
an ‘|X1| X[ ~°

But X, being a primitively irreducible point of §, is a lattice point of a lattice A, with
d(A;) <A(S), such that the only points of A in § are of the form

mX,, where m=0,4+1, +2, ....

For each integer />1 we consider the lattice

;41
A‘l - -l-—-—]_Al.

If X is a point other than O of A} which is in §, it is clear that

l—l—lX

X=mr—

for some non-zero integer m. Further

[+1 [+1 1 [+1
X127 1 X1 (1-7) 1 %) =27 1 X |

and

‘ X _ X, _
X7 1%

. X’ — XO <€
| X[ X
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and so, by our choice of ¢, the point X cannot be in S. Consequently A is admissible for S.
Thus

as)<dny = (1) ) < (1) acs)

and | lim d(A}) = A(S).
[—>

As O is an inner point of § and A is admissible for S, the sequence of lattices Ay, Aj, ... is
bounded. So, by Mahler’s convergence theorem, this sequence contains a subsequence
converging to some limit lattice A. Since

d(A) = lim d(A)) = A(S),

while the lattices A5, A5, ... are admissible for S, it follows that A is a critical lattice of .
But it is clear that, as / tends to infinity, the point

[+1

—1 X
of A converges to the point X;. So by lemma 3 we see that X is a point of the critica.
lattice A. This proves the lemma.

The following analogue of Mahler’s result (19465, theorem C) is an immediate conse-
quence of the above lemma and corollary 2 to theorem 4.

THEOREM 5. Let S be a star set with A(S) < 00, containing O as an inner point. If S is zrreduczble
among the star sets, then every outer boundary point of S is a lattice point of some corresponding critical
lattice of S.

For the rest of this section we confine our attention to bounded star sets. We first prove
the following result concerning the set of primitively irreducible points of such a set.

THaEOREM 6. Let S be any bounded star set with A(S)>0. Then the set of primitively irreducible
points of S is open and contains all points other than O of some sphere with centre O.

Progf. Choose R so large that | X|<R

for every point X of S. Let X, be any primitively irreducible point of S. Choose A to be alattice
with d(A) <A(S), having X, as a lattice point, such that the only points of A in § are of the
form mX,, where m =0, £1, -2, .... (16)
We may suppose that A is generated by points X;, X,, ..., X,. Now there are only a finite
number of points Y of A satisfying | Y| <R+1.

Let Yy, ..., Y, be the set of all such points of A which are not of the form (16). Then, as none
of these points are in the closed set S, we can choose a number ¢, with 0<¢<1, such that

| X—Y,|>¢, fori=1,...,4

for every point X of S. By lemma 2, all sufficiently small positive numbers  have the
following property. For every point Xj* with

| X —X, | <7, (17)
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REDUCTION OF STAR SETS 73
and for all integers u;, ..., u,, if
Y=u, X, 4+u, X,+...4u, X, (18)
Y*¥ =u X¥F+u, Xo+...+u, X, (19)
and | Y*|<R, then |Y*—-Y|<e.

We now show that every point X7 satisfying (17) is a primitively irreducible point of .S,
provided 7 is sufficiently small. Consider any such point X;*. Provided 7 is sufficiently small
the points X}, X,, ..., X, are linearly independent and generate a lattice A* with

d(A*) <A(S).
Consider any point Y* of A* which is not of the form
mX{¥, wherem=0,+1,42,.... (20)

Then Y* is of the form (19) where uy, ...,u, are integers, u,, ..., u, not being all zero. If
| Y*| =R, then Y* is notin S. Suppose that | Y* | <R and let ¥ be the corresponding point
of the form (18). Then, provided 7 is sufficiently small, we conclude that | Y*—Y | <e. In
particular, it follows that | Y| <|Y*|+e<R+1.

As uy, ..., u, are not all zero, Y is not of the form (16) and so ¥ = ¥, for some integer / with
1</<h. Thus | Y*—7,| <e, and it follows from our choice of ¢ that ¥* is not a point of S.
This shows that the only points of A* in S are of the form (20). Since d(A*) <A(S) it follows
that Xi* is a point of §' and that X} is indeed a primitively irreducible point of S. This com-
pletes the proof that the set of primitively irreducible points of X is open.

It follows immediately from lemma 1 that every point X with

0<]X|<%(,f)l | (21)

is a primitively irreducible point of S. This completes the proof of the theorem.

CoroLLARY. Let S be a bounded star set, with A(S) > 0, which is irreducible among the star sets.
Then S'is a proper star set.

Progf. By theorem 6 the set of primitively irreducible points of S is open and contains all
points other than O of some sphere with centre O. So S contains O as an inner point, and,
by corollary 2 to theorem 4, every outer boundary point of §'is irreducible. Thus every outer
boundary point of § being irreducible is a limit point of inner points of S. Since Sis a bounded
star set it follows that every point of §'is a limit point of inner points of S, so that §'is a proper
star set.

Our next object is to prove the main theorem of this section, namely, theorem 7 (stated
in § 1), but we first need two lemmas.

Lemma 8. Let S be a bounded star set. Suppose that | X | <R for all points X of S. Let ¢ be a real
number with 0<<e<A(S)/Rr=1. Suppose that for some point X, with 0< | X, | <R, all outer boundary
points X of S with 1X|>| X, |, . }

< (for some sign) (22)
4R e 3t

X X,
— 0
,l | [ X |
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74 C. A. ROGERS ON THE
are irreducible. Then there is a star set T contained in S with A(T') = A(S) and such that all the outer
boundary points X of T with | X|>| X, |— e, }
X, € . (23)
o o | <55 or some sign),
XTEX]| Sar o some ey

are irreductble.
Proof. We take T to be the union of the set 77 of all points X of S such that either

[ X <] Xo|—de
X X,
(K],
and the set 7, of all points of the form AX, where 0 <<A<1 and Xis an irreducible point of S.
Then clearly 7 is a star set contained in S.

We prove that A(7T") = A(S). As § contains 7, we have A(7") <A(S). We suppose that
A(T) <A(S) and eventually obtain a contradiction. As A(7") <A(S), there is a lattice A with
d(A) <A(S) and with no point other than O in 7. Since d(A) <A(S), there is a point X,
other than O of Ain S. Since X] is not in 7, we must have

FANp AR }

>-°. (for both signs),

of 4R

X,

vt <
RARNEY

(for some sign).

II?
Replacing X; by —X|, if necessary, we may suppose that

[ X[ [ Xof] 4R
Since X, isin S butisnotin 7, thereis anumber A>1such that ¥ = AX is an outer boundary
point of S which is not an irreducible point of . As Y satisfies

YT X ]| 4R

it is clear from our hypotheses that | Y| <| X, |. Hence | X |<| X, |.
Suppose that X, is any point other than — X}, O and X, of Ain §. Then X, is notin 7, and

replacing X, by —X,, if necessary, we may suppose that

| X, | > Xp|—16
X €
2 0
__.._.__________<__
[ X, [X[| 4R

As before we must have | X, | <| X, |. Now

=l (= ) -l ) () s ()
<R]|X2| éﬁ[féﬂ ;§0,}+|le | X [+ 11 X1 | =] X ]
_, AW

Rnl
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REDUCTION OF STAR SETS 75

So by lemma 4 the point X, — X] is a primitively irreducible point of § and so belongs to 7.
But this is impossible since X, — X is a point other than O of a lattice A admissible for 7.
Hence the only points of A in § are —X;, O and X,;. Consequently X| is a primitively irre-
ducible point of §'and so is a point of 7. This second contradiction proves that A(7") = A(S).

Now let X be any outer boundary point of 7 satisfying (23). Itis clear from the construc-
tion of 7" that X = 1Y, where 0<<A<1 and Y is an irreducible point of §. But, since
A(T) = A(S) and T is contained in S, it follows by lemma 5 that Y is an irreducible point
of T. As X is an outer boundary point of 7, we must have A = 1, and so X = Y is an irre-
ducible point of 7. This completes the proof of the lemma.

LemMA 9. Let S be a bounded star set. Suppose that | X | <R for all points X of S. Let ¢ be a real
number with 0<<e<<A(S)[R"~'. Let X, be any point other than O. Then there is a star set T contained
in S, with A(T') = A(S) and such that all the outer boundary points X of T with

X X,
TR

<& (for some sign) (24)
are trreducible. o
Proof. The lemma is unaffected if we replace X, by X, for any 14=0. So we suppose that

for some positive integer N, N|X,| =R
0 - bl

and that | Xo | <te.

Write X =&,

for h=1,2,..., N. We use lemma 8 to give an inductive construction of a sequence of sets
Ty Ty_1s .-+ Ty We take Ty, = S. Then as there are no outer boundary points X of 7 with
| X|>| Xy| = R, thereis by lemma 8 a star set 7y_, contained in 7 with A(Ty_,) = A(Ty)
and such that every outer boundary point X of T_, satisfying

| X[>| Xyt [>] Xy |~ 16, }

X X € .
—o 4+ | <-= (for some sign),
< 5
is irreducible. Proceeding inductively in this way we can construct star sets Ty, Ty_1, ..., 1
such that T,cT,c...cTy,
A(TY) = A(Ty) = .. = A(Tyy) = A(S),
and that every outer boundary point X of 7, satisfying
| X[>h] X, |, }
X X, € .
ot 4 2 | <—= (for some sign),
x| iR 5

-

is irreducible, for £ = 0, ..., N. Now it is clear that 7}, has the required properties for the
set 7.

Proof of theorem 7.1 Choose R so large that every point X of § satisfies | X | <R. Choose
a number ¢ with 0<<e<<A(S)/R*~!. Choose points X;, X,, ..., X such that

|X1|=|X2|=---= IXN|:17
T See p. 61.

Vor. 245. A. 10
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76 C. A. ROGERS ON THE
and such that every point X other than O satisfies
IIT% =+ Iu%—, <4_€1_E (for some sign), (25)
for some integer r with 1<r<<N. By applying lemma 9 repeatedly we can choose star sets
T, ..., Ty with , SOT\2T,2>...0 Ty, } (26)
A(S) =A(T)) =A(T,) = ... =A(Ty),

and such that, for r =1, ..., N, all the outer boundary points X of T, satisfying (25) are
irreducible. (

Take 7'= T, and consider any outer boundary point X of 7" Let r be the integer with
1<r<< N such that X satisfies (25). As X is in 7 it is in 7, and so for some A>1 the point
Y = AX is an outer boundary point of 7. It follows from our construction of 7, that Y is
an irreducible point of 7,. Hence, by lemma 5, Y is an irreducible point of 7, and so ¥
coincides with X. Thus every outer boundary point of 7 is irreducible.

Now, if T, is any star set contained in 7" with A(7,) = A(T'), then, by lemma 5, we see
that every outer boundary point of 7" belongs to 7. Since 7" is bounded this implies that
T and T, coincide. Thus 7 is irreducible among the star sets. Consequently, by our hypo-
theses, 7" does not coincide with §, and § can be reduced to the star set 7" which is irre-
ducible among the star sets. Further, by the corollary to theorem 6, the set 7"is necessarily
a proper star set. This completes the proof of the theorem.

As a direct consequence of this theorem we have the following result showing that the
critical determinant of any bounded star set can be determined from a knowledge of the
critical determinant of a corresponding proper star set.

THuEOREM 8. Let S be any bounded star set. Then S has the same critical determinant as the proper
star set T defined to be the closure of the set of inner points of S.

Proof. If A(S) = 0 the result is trivial. If A(S) >0, then, by theorem 7, S can be reduced
to a proper star set ", with A(S”) = A(S). But clearly

$§'cTcs,
so that A(S") <A(T)<A(S).
Thus A(T') = A(S) and the theorem is proved.

We remark that the second example in appendix 1 shows that the condition that § is

bounded is needed in theorem 8. '

5. REDUCTION OF BOUNDED ALGEBRAIC STAR SETS

Before we can prove the main theorem of this section, namely, theorem 12 stated in § 1,
we have to introduce some definitions and to prove some results on the combinatorial
topology of regions bounded by algebraic surfaces. The various concepts will be explained
in detail and elementary proofs will be given for the results.

We first introduce the conceptsT of algebraic gratings, cells and complexes. If F(xy, ..., x,)
is a polynomial in xy, ..., %, with real coeflicients, which is not identically zero, the set of
all points X in z-dimensional space with co-ordinates (¥, ..., x,) satisfying

F(x,...,x,) =0
is called an algebraic grating or for short a grating. Clearly a grating is a closed set.
T Our terminology is based on that used by Newman (1939).
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REDUCTION OF STAR SETS 77

Let G'be an algebraic grating and let X, be any point notin G. Let .S, be the set of all points
X which can be connected to X, by a continuous curve which does not meet G; and let §
be the closure of S,. Any such set S is by definition called an algebraic n-cell of G or more
simply a cell of G; the corresponding set S, is called the domain of the cell. It is clear that
a cell § of a grating G is a closed connected set, and that the corresponding set .S, is the set
of points of § which are not in G and is an open connected set. The union of any number of
cells of an algebraic grating G is called an algebraic n-complex on G or a complex on G.

THEOREM 9T. Let G be any algebraic grating in the n-dimensional space X of points X with
coordinates (xy, ...,%,). Then the number of cells of G is finite. Further, if n=>2, there is an algebraic
grating G’ in the (n— 1)-dimensional space &' of points X' with co-ordinates (xy, ..., %,_,, 0) such that
the closure of the orthogonal projection of any cell of G on the space R’ is a complex in R’ on G'.

Proof. We prove the result by an induction on n. When 7 = 1, the grating G reduces to
a set of a finite number (possibly 0) of points on a line. The cells of G are the closed con-
nected sets on this line, with points of G as end points, containing no points of G in their
interior; it is clear that G has only a finite number of cells.

We now suppose that #>>2 and that every algebraic grating in (z— 1)-dimensional space
has only a finite number of cells. Let G be any algebraic grating in the n-dimensional space
2. We suppose that G is the grating defined by the polynomial F(x,, ..., x,) ; then F(x,, ..., x,)
is not identically zero. We write F(xy, ..., x,) = F(X) for convenience.

We need some well-known algebraic results. A polynomial in x4, ...,x, with real coeffi-
cients is said to be irreducible if it cannot be expressed as the product of two non-constant
polynomials with real coefficients. Now by a fundamental theorem of algebra, the poly-
nomial F(xy,...,x,) can be decomposed into its real factors in essentially one way.l Let
H(X) be the polynomial formed from F(X) by multiplying together those irreducible real
factors of F(X) which are essentially distinct (two factors being regarded as essentially the
same if one is a constant multiple of the other). Then H(X) has no non-constant factor
which is a perfect square. Further H(X) = 0ifand onlyif F(X) = 0, and the grating defined
by the polynomial H(X) is the grating G defined by F(X).

We may write

HX) = 3 h(X)x, (27)
r=0

for some non-negative integer m, where hy(X'), ..., 4,,(X’) are polynomials in xi,...,%,_,
with real coefficients, the polynomial %,,(X’) not being identically zero. Let D(X’) be the
discriminant of the polynomial (27) regarded as a polynomial in x,. Then D(X") is a poly-
nomial in the coefficients 4, (X’), ..., %,,(X’) and so is a polynomial in x,, ..., %, , with real
coefficients. Further, by a well-known algebraic result,§ if D(X’) were identically zero,
then H(X) would have a factor which was the square of a non-constant polynomial in

t [Note added in proof (20 May 1952). Theorem 9 and its consequence theorem 10 are not really original.
I find that van der Waerden (1930) has proved a theorem very similar to theorem 9. But the theorems
differ in a number of ways and it seems desirable to give a detailed proof of the result in the form in which
it is required in the sequel.]

1 See, for example, van der Waerden (1940, §23).

§ See van der Waerden (1940, §§27, 28); van der Waerden works with polynomials over a field, but it is
easy to see that the result we require holds in any integral domain having unique factorization.

10-2
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78 C. A. ROGERS ON THE

X1, ..., %, with real coeflicients. Thus it follows from our choice of H(X) that D(X") is not
identically zero. '

We write J(X') = h,(X') D(X')

and we take G’ to be the grating defined by the polynomial J(X") in the (n—1)-dimensional
space Z'. This is permissible as J(X") is not identically zero.

Let K be any cell of G and take C to be the sum of all the cells of G’ whose domain con-
tains some point of the orthogonal projection K’ of K on the space %' (i.e. the set K’ of all
points X’ = (x,,...,%,_;) such that for some x, the point X = (xy,...,x,) is in K). Clearly
C'is a complex on the algebraic grating G'. We eventually prove that C'is in fact the closure
of K'. We first prove that C contains the closure of X’. By our inductive hypothesis G’ has
only a finite number of cells. So C is the sum of a finite number of closed sets and is thus
closed. Let 4 be any point of K, and let A" be the projection of 4 on #’'. Then 4 is the
limit point of a sequence X}, X,, ... of inner points of K, and the projections X7, X7, ... of
X, X,, ... are inner points of K’ converging to 4’. But there are points ¥’ of #’ not on G’
arbitrarily near to the point X;, for r = 1,2, .... Since any point ¥’ of #’ not on G’ is in the
domain of some cell of ¢/, and all points Y’ of %’ sufficiently near to X, are in K’, it follows
that there are points ¥’ of C arbitrarily near to X;. Thus 4’ is a limit point of limit points
X, Xy, ... of C. As Cis closed it follows that 4’ is in C. This proves that K’ is contained in C,
and so C contains the closure of KX’.

Now consider any cell § of the grating G’ contained in the complex C. We shall prove
that every point in the domain S, of S is the projection of some point of K. This will prove
that C'is contained in the closure of K’. As S'is a cell of C, there is a point X’ of the domain §
of S, which is a point of K’, and which is therefore the projection of a point X of K. We can
clearly choose a point 4 of the domain K of K so close to X that the projection 4" of 4 is in
the domain $,. Let B’ be any other point of the domain §,. Our object} is to prove that B’
is the projection of a point B of K,

Since 4’ and B’ are in the domain S, of the cell S of G, there is a continuous curve in the
space #’, which does not meet G, joining 4’ to B’. This means that there are continuous
real functions #,(¢), ..., x,_,(¢), such that

X'(0) = (41(0), s, (0), 0) = 4’ = (1, ..y, 1, 0),
X(1) = (5(1)s o5, (1),0) = B = (byy b, 1, 0),
and J(X' (1)) = J(x,(2), .y %, () 0

for 0<<¢<1. For each ¢ with 0<<¢<1, let £(¢) be the number of real roots of the equation

H(X'(0),8) = H(%,(2); -, %1 (1), €) = é/lr(X'(t)) & =0, (28)

regarded as an equationin§, andlet&, (?), ..., §,,(f) be the real roots of this equation arranged
i orderso that (1) <&(0) <. <o)

As J(X'(2))=+0 for 0<¢<1, we have £,(X’(¢)) 40 for 0<i<1, and so | 4,,(X'(£)) | has a
positive lower bound for 0<¢<<1. Again |%,(X'(?)) |, ..., | 2,(X'(¢)) | have finite upper

T Our method is based on a method used by Ostrowski (1920).
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REDUCTION OF STAR SETS 79

bounds for 0<<¢<< 1. Thus for some M all the real and complex roots & of (28) satisfy | £ | <M
for 0<¢<1. Further as D(X'(¢)) =0 for 0<<¢<1, the modulus

| DX (#)) (X () 127" |

of the product of the squares of the differences between the roots of (28) has a positive lower
bound for 0<<{¢< 1, and so there is an ¢>>0 so small that

() —E() >e, fori=1,.. k() —1,
for 0<e<1.

Consider any number ¢ with 0<<¢t<1. Choose any ¢ with 0 <d<<e. Choose an integer
k and numbers By =100 (= 0,1,..00h),
so that o< —M<M<y,
and H(X'(t),7,) 0, forj=0,1,...,k
Choose 7> 0 so small that for j = 0,1, ..., 4 the numbers
H(X'(),;), H(X'(s),1,)

have the same sign for all s with 0<s<{1 and |s—¢|<7. Now, as d<e, for any such value
of s (including the value s = ¢) the interval 5;_, < <7, can contain neither a multiple real
root nor a pair of real roots of the equation

H(X'(s),€) = 0, (29)
and contains just one real root if and only if the signs of the numbers
| H(X'(5),7;-1),  H{X'(s),7;)
are different, i.e. if and only if the signs of the numbers
H(X'(t), 77j—1)’ H(X'(t), 77j)

are different. Further every real root of the equation (29) lies in one of the intervals

77j—1<£<’7j (J=1,..,h).
Consequently k(s) = £(¢) and ‘

|E() —&(s) | <8, fori=1,...,k(),
provided 0<s<1 and | s—¢|<7. Hence £(¢) is a constant, say £, for 0<<¢<1 and

E1()y .05 Ex(2)

are continuous functions of ¢ for 0<C¢<1.
Write £,(t) = min {a,—1, — M},
€1 (t) = max {a,+1, M},
for 0<{¢< 1. Since 4 is not a point of G we have
H(X'(0),a,) = H(4)+0,
and so we can choose an integer ¢ with 0<C¢<Ck such that

£(0) <a,<&:,1(0).
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We write 5o(t) = A+ s (0

for 0<¢< 1, where A and y are constants with 14 = 1, >0, > 0 chosen so that
x,(0) = a,.

It is clear that H(X(t) = H(X'(t),x,(¢)) +0

for 0<¢<1. Take B to be the point with co-ordinates (b, ...,0,_1,5,), where b, = x,(1).
Then the curve given parametrically by

X = X(0) = (8,(0), e ,(1)  (01<1)

is a continuous curve leading from 4 to B and further H(X)=0 for each point X of this
“curve. Thus 4 and B are joined by a continuous curve which does not meet G and so B is
a point of the domain K. Hence B’, the projection of B, is a point of K'. This proves that
any point of the domain of any cell of the complex C'is in K'. It follows that every point of
C'is in the closure of K’. This completes the proof that C'is the closure of K’. Thus the closure
of the orthogonal projection of any cell of G on the space %' is a complex in £’ on G'.
Consider any cell S of the grating G’. Suppose that K, ..., K, are distinct cells of the
grating G whose projections K7, ..., K; have points X7, ..., X; in the domain §, of S. Then we
can choose points 4,, ..., 4, in the domains of the cells K, ..., K, with projections 4, ..., 4,
so close to X7, ..., X; that 4, ..., 4; are in S;. Then, as in the last paragraphs, for any point
B’ of S, there are points By, ..., B, in the domains of the cells K, ..., K, whose projection
is B'. Now, if 1<<i<j<A, the points B; and B; are in the domains of the distinct cells K;, K;
of G, and so there is at least one point of G on the line segment joining B, to B;. Consequently
there are at least 2—1 points of G on the line through B’, By, ..., B, and the equation

H(B'E) = 3 h(B)& =0

has at least 2—1 real roots for £. But as B’ is not in G’ we have #,,(B’) 40, and this equation
has at most m real roots. Thus 2<m-1. Hence there are at most m~+1 cells of G whose
projection has a point in the domain of any particular cell of G’. As the projection of each
cell of G certainly has a point in the domain of some cell of G’, and as G” has only a finite
number of cells, it follows that the number of cells of G is less than or equal to m~+1 times

the number of cells of G”.
We have now completed the proof of the theorem in z-dimensional space on the
assumption that the first assertion is true in (z—1)-dimensional space. The result follows

by induction.
TaroreM 10. Let K be a complex on an algebraic grating G. Let T be the closure of the set of all
points of the form AX where 0<A<1 and X is in K. Then T is a complex on some algebraic grating G,.
Proof. Let G be the grating defined by a polynomial

F(X)=F(xy,...,%,)
of degree m. Consider the grating G’ in the (n+ 1)-dimensional space of points

. X' = (%yy ooy Xy X01)
defined by the polynomial
1 X xn
H(X) = (50" (1=,0) F (2, 22 ).

n+l Xn+1
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Let K’ be the union of those cells of G’ whose domain contains a point of the form $4’,
where 4" = (ay, ..., a,,1) and the point 4 = (a,, ..., a,) liesin K. Itis clear that, if the point
X' = (xy,...,%,,,) belongs to the domain of such a cell of G’, then 0<x,,;<1, and for all A
for which 0 <Ax,_, <1the point AX" also belongs to the domain of the same cell of G’. Further,
if 0<A<l1, 0<u<l,

X = (%05, 1), Y =(yy..9,1),
then it is clear that the points AX" and #Y’ belong to the domain of the same cell of G, if
and only if the corresponding points X and Y belong to the domain of the same cell of G.
Thus K’ consists of the closure of the set of all points of the form 1X’, where 0<<A<1,
X' = (%, ..0,%,,1),

and X isin K. Now we see that 7 is the orthogonal projection of K’ on the space of points
X' with x,,, = 0. Since T is closed and K’ is the union of a finite number of cells of G, it
follows by theorem 9 that 7"is a complex on some algebraic grating G;,.

LEmMMA 10. Let n be a positive integer, and let R and ¢ be positive numbers. Then there exists a
number ¢, depending only on n, R and ¢, with the following property. If Ais any lattice with determinant
A, with no point X satisfying 0<|X|<e,
and with a primitivet lattice point X, satisfying

| X, | <R,
then A is necessarily generated by X, and certain points X,, ..., X, satisfying
| X, |<eA (r=1,...,n). (30)

Proof. Itis clear from the spherical symmetry of the lemma that we may suppose without
loss of generality that X, has co-ordinates (0, ..., 0, 2”) where

e<xPD<R.

‘Let A’ be the orthogonal projection of A on the space £’ with equation x, = 0. Then, as
X, is a primitive point of A, the projection A’ of A is an (n—1)-dimensional lattice in %’

with determinant A’ given by XDA — A
Thus %<A’ < A .
€

Now, if there were a point Y’ = (y,, ...,4,_;, 0) other than O of A’ with
| Y[ <3J(3) ¢/R, (31)

there would be a two-dimensional sublattice of A generated by X, and a point of the form
Y = (y,,...,y,) with determinant A0 | Y| <3./(3) e

and so there would be a point X other than O of this sublattice of A satisfying | X | <e.
Consequently there is no point ¥’ other than O of A’ satisfying (31).

1 A lattice point X is said to be primitive if there is no lattice point of the form AX with 0<A<1.
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82 C. A. ROGERS ON THE

By a well-known result of Minkowski, for each positive integer 7, there exists an absolute
constant A, such that, if A is any lattice in #n-dimensional space, then A is generated by points
X, ..., X, satisfying | X, || X, | .o | X, | <A,d(A).

Applying this to the lattice A’, this lattice is generated by points Y7, ..., ¥,_, satisfying

[ Y1) Yol [ Yooy [ <Ay Ale
As | Y, |=%J(8) ¥R for r =1,...,n—1, it follows that
2 R)n-‘é‘A

6,

| Y, </1n—1(:/§;2

forr=1,...,n—1. Corresponding to each point ¥, we can choose a point X, ,; of A with
+1) +1) — +1) [« 1
A=y, oy A=y, <D

Then A is generated by the points X;, X,, ..., X,, and we have

2 R\"2A
erl</1n—l(:/_3§) ?-*'Ra

for r = 1, ...,n. As there is no point X of A other than O in the sphere | X | <¢, it follows by
a well-known result that A>y,¢", for a suitable positive constant y, depending only on 7.
Hence the points X, ..., X, generating A satisfy the inequalities (30) with
ot (LB R
e \J3¢? Y,

TuroreM 11. Let S be a proper bounded star set which is also a complex on an algebraic grating G.
Let T be the closure of the set of all points of the form AX, where 0<A<1 and X is a primitively irre-
ducible point of S. Then T is a proper star set which ts also a complex on an algebraic grating.

Proof. Let G be the grating defined by the polynomial

F(X) = F(x,, ..., x,).

We choose R so large that every point X of § satisfies | X | <R. By theorem 6, we choose
¢>0 so small that every point X with 0<|X|<2¢ is a primitively irreducible point of .
Let ¢ be the number corresponding to 7, R and ¢, whose existence is established by lemma 10,

and write M =cA(S), N =3c""1R{A(S)}2

We use X to denote the point in 7?-dimensional space with co-ordinates

(20, o, alD w2, L a).

We write for convenience X=(X,...,X,).
We use A(X) to denote the determinant | (" | of the corresponding matrix. We write

O(X) = HF(u X, +... +u, X,),
the product being taken over all sets of integers uy, ..., ,, not all zero, with

|u,|<N, forr=1,...,n
Write
HX) = {| X, |2=e3H{M>— | X, [} ... {M>— | X, |2 [{A(S) P — 9o{A(X)}] [{A(S)?
—{AX)PTI(X).
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REDUCTION OF STAR SETS 83

Then H(X) is a polynomial in x{", ..., 2? which is not identically zero. Let G, be the grating
in n%-dimensional space defined by this polynomial.

Let K be the complex on the grating G, consisting of all cells whose domain contains a
point X = (X, ..., X,) with the properties:

(a) [ X, |>€;

) | X, |<M (r=1,...,n);

(©) BA(S)<|AX) |<A(S);

(d) the only points of the lattice A generated by X, ..., X, which are in § are of the form

mX, (m=0,+1,4+2,...).
Let K’ be the projection of K on the space with equations
X,=X,=..=X,=0,

i.e. let K’ be the set of all points X, such that there are points X, ..., X, for which the point
X = (X,,...,X,) isin K. Let C be the closure of K’. It follows by repeated application of
theorem 9 that C is a complex on some algebraic grating G, say. We prove that C'is in fact
the closure of the set of all primitively irreducible points X of § with | X| >e.

Let 4, be any primitively irreducible point of § with | 4, | >¢. Then there is a lattice A,
with d(A,) <A(S), having 4, as a lattice point, such that the only points of A, in § are of the
form md, (m=0,4+1,4+2,...).

By replacing A, by a suitable sub-lattice of itself, if necessary, we can ensure that
FA(S) <d(Ay) <A(S). Then 4, is a point of S and is a primitive point of A,. By lemma 10 and
our choice of M there are points 4,, ..., 4, such that 4,, ..., 4, generate A, and

|4, | <M, forr=1,...,n
Consider the point A = (4,, ..., 4,) in n?>-dimensional space. Note that d(A,) = |A(A) |,
that
o BA(S) <] A(A) | <A().

Clearly A is a limit point of points X which are not on the grating G,. But provided X is
sufficiently close to A the conditions (a), (5), (c) and (d) above are satisfied. Thus, if X is
sufficiently close to A, and is not on G|, then X is in the domain of one of the cells of the
complex K, and the projection X, of X is in C. Hence 4, is a limit point of C. As C'is closed
it follows that C contains the closure of the set of all primitively irreducible points 4, of
S with | 4, | >e.

Now let X; be any point in K’. Then X is the projection of some point X = (X, ..., X))
in K. As X is in K it is the limit point of points A in the domain of one of the cells of K.
Hence X, is a limit point of points 4,, which are projections of points A in the domain of
one of the cells of K. Consider any such point 4,; we prove that 4, is a primitively irre-
ducible point of S. As the corresponding point A is in the domain of one of the cells of K,
the point A can be joined by a continuous curve which does not meet G, to some point B
such that the point X = B has the properties (a), (8), (¢) and (d) above. Let this curve be
given parametrically by X —X(1) (0<t<1).

VoL. 245. A. 11
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84 C. A. ROGERS ON THE
For all ¢ with 0<<¢<{1 we have H(X(#)) =0, and so
| X1(2) | e

| X,(0) |+M (r=1,..,n);
FA(S) =+ | AX(2)) [ +=A(S);
TI(X(£)) 0.

When ¢ =1 the point X = X(1) = B satisfies the conditions (a), (¢) and (¢), thus by con-
tinuity considerations when ¢ = 0 the point X = X(0) = A satisfies the conditions (), ()
and (c). Let A, be the lattice generated by 4, ..., 4,. Then 3A(S) <d(Ay) = | A(A) | <A(S).

We also have |4,|<M, forr=1,..,n.
Let 4 be any point of A, which is in S. Then | 4| <R and, by lemma 1 and our choice of
M and N, A=Ay +...+u,4,
for some integers #,, ..., #, satisfying |
] ur[<N (r=1,...,n).
F(A) = Fluy4,+...+u,4,) =0,
and 4 is in the ddmain of one of the cells of the complex S. But we also have
Fluy X, (8)+ ... +u, X, (1)) +0,
since II(X(#)) =0, for 0<<¢<<1. So the curve given by;'
Xt)=u, X,()+...+u, X, (1) (0<i<1),

Thus, as II(A) =0, we have

is a continuous curve, which does not meet G, leading from the point 4 to the point
B=uB+...4u,B,

Consequently this point B isa point of the domain of one of the cells of S. Asthe pointX = B
satisfies the condition (d) above, we must have

B =u B,
and Uy =g = ... = U, = 0.
Thus 4 = u, 4, and 4 is of the form
B mA, (m=0,+1,+2, ..).

This proves that 4, is a primitively irreducible point of § with | 4; | >e. It follows that every
point of K’, and therefore every point of C, is a limit point of the set of primitively irreducible
points X of § satisfying | X|>e. Hence by the last paragraphs the algebraic complex C
on G, coincides with the closure of the set of primitively irreducible points X of .S satisfying
| X|>e.

As every point X with ¢<| X|<2¢ is a primitively irreducible point of S, it is clear that
T'is the closure of the set of all points of the form AX, where 0<<A<{1 and Xisin C. It follows
by theorem 10 that 7"isa complex on some algebraic grating G;. Itis clear T'is a proper star
set. This proves the theorem.
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We now prove a lemma analogous to lemma 8.

LEmMa 11. Let S be a proper bounded star set, which is a complex on an algebraic grating G.
Suppose that all points X with 0<| X | <e are primitively trreducible points of S, and that | X | <R
Sor all points X of S. Suppose that for some point X, with 0<<| X, | <R, all the outer boundary points

X of S with X |> 1K, }

" (32) ‘

€ .
<iR (for some sign),

ITXT ™ X
are trreducible. Then there is a proper star set T which is a complex on an algebraic grating, which is
contained in S and has A(T) = A(S), and which is such that all the outer boundary points X of T with

| X[>] Xy | =16, }
X X, € . (33)
,m + X, <iRr (for some sign),

are irreducible.
Proof. We take T to be the union of the set 7 of all points X of § such that either

| X|<| Xy |—1e
| X X, ¢ .
or ’m -+ m 24‘}—2 (for bOth SlgnS),

and of the closure T, of theset of all points of the form A.X where 0 <A< 1 and Xisa primitively
irreducible point of S. Clearly T, is also the set of all points of the form AX, where 0<<A<1
and X is an irreducible point of S. It follows by the proof of lemma 8 that 77 is a star set
contained in § with A(7;) = A(S) and such that all the outer boundary points X of T,
satisfying (33) are irreducible points of T,. We take T to be the closure of the set of inner
points of 7. Then T is clearly a proper star set contained in S, and by theorem 8 we have
A(T) = A(T,) = A(S). Further as T is contained in T, all the outer boundary points X
of T satisfying (33) are irreducible. Now we have only to prove that 7'is a complex on some
algebraic grating.
Let the grating G, on which § is a complex, be defined by the polynomial
F(X) =F(x,...,x,).

By theorem 11 the set 7 is a complex on an algebraic grating G, defined by some poly-

nomial Fy(X) = Fylx1, -5 %),
say. Write
S 1/ € \22 n 2
Fy(X) = [ XP—{(1 % =17 [ [1-5 () | 1211 %= | 3 500] ]
- r=1
so that F;(X) = 0 if either | X|=|X,|—2e
X Xy | € .
or ’m :t;lTO—! =R (for some sign).

Take G, to be the grating defined by the polynomial

Fy(X) = F(X) F\(X) Fy(X).
Now it is clear that T is the union of the set 7, and the closure 77 of the set of all inner
points X of § satisfying either | X|<| X, |—}e (34)

X Xo € 1
or \m & I—X:I >R (for both signs). (35)

11-2
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86 C. A. ROGERS ON THE

But as T, is a complex on G, and as G; includes G,, it follows that T, is a complex on Gj.
Also as §'is a complex on G and G, includes G and the points X with F;(X) = 0, it follows
that 77 is a complex on Gj, the complex on G, consisting of the cells of G whose domains
contain an inner point X of § satisfying either (34) or (35). Hence 7, being the union of
two complexes on Gj, is itself a complex on G;. This proves the lemma.

We are now in a position to prove the main result of this section, namely theorem 12
stated in § 1.

Proof of theorem 12. We recall that lemma 9 is proved by a finite number of applications
of lemma 8 and that theorem 7 is proved by a finite number of applications of lemma 9.
By a precisely similar use of a finite number of applications of lemma 11 we may prove a
lemma analogous to lemma 9, which may be used a finite number of times, as in the proof
of theorem 7, in order to prove theorem 12. This procedure suffices to prove the theorem.

We conclude by giving the proof of theorem 13, stated in § 1.

Proof of theorem 13. The bodies in the table have the critical determinants shown by the
work of Minkowski (1904) for S}, Davenport (1941, 1939) for §, and S5, Markoff (1903)
for S, and Oppenheim (see Dickson 1930) for S; and S.

The body | is clearly bounded and is a complex on the grating with equation

H(1 £ 2 +x,4x5) = 0,

the product being taken over all possible combinations of the signs. The result for this body

follows directly from theorem 11.
For the unbounded bodies S, ..., S; we need results of Mahler. Let S be the set of all

points X of S, with | X|<t,

for r = 2,...,6 and any positive £. Then S is a bounded star body and Mahler (19465,
§§14, 15 and 16)T has proved that A(S®) = A(S,)

forr =2, ..., 6, provided that ¢ is sufficiently large. Now for r = 2, ..., 6 the body S% is both
a bounded star body and a complex on an algebraic grating, for example SP is one of the
cells of the grating with equation '

(83— —3) (L—#343) = .
It follows by theorem 12 that provided ¢ is sufficiently large there is for » = 2, ..., 6 a proper
bounded star set 7" with A(T.) = A(S®) = A(S,),

which is a complex on an algebraic grating, and which is irreducible among the star sets.
This completes the proof.
APPENDIX 1. COMPARISON OF TWO DEFINITIONS FOR THE CRITICAL DETERMINANT

In this appendix we use A,,(S) to denote the value assigned to the critical determinant
of § by Mabhler’s definition, and we use A(S) to denote the value assigned to the critical
determinant of S by our definition. It is clear from the definitions that

Ap(S) <A(S)

1 But for S5 see also Davenport & Rogers (1950).
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REDUCTION OF STAR SETS 87

for all sets S. We give three examples of sets S for which
A (S) <A(S).

Example 1. Consider the ‘square frame’ § of points (x, y) in two-dimensional space
satisfyingt 1<max(|x|,\|y|)<2.
If X is any point other than O of a lattice A satisfying

max (||, |y])<2,

then it is clear that there is a point of A of the form mX, where m = -+1, 4-2, ..., in §. Thus,
using our definition, the determinant of S is the same as that of the set

max (| x|, |7]) <2,

and so A(S) = 4.
But the lattice of points with integral co-ordinates has no point in the interior of S, and
so using Mahler’s definition A (S)<1

(and in fact it is easy to see that A, (S) = 1).

Example 2. Take S to be the set formed by adding to the set of all points X = (x,y)
saslying min {| ¥y —p° |, [y —yr—[}<1,
the set of all points (x, y) satisfying

y=0, 1<|x|<¥(1°6).

Then it follows from a result of mine that

A(S) = /(16).
On the other hand, the lattice of points with integral co-ordinates has no point other than
O in the interior of S, so that A (S) <1

(and again A,,(S) = 1 in fact). Note that this set S is a star set.
Example 3. Take S to be the closed bounded star set bounded by the line segments joining
the points
(1,0),  (130), (
(0,1), (0,13), (—1,
(“19 O): (“1%’ O)a (_2%: "1): (_23 '_1):
(O:‘"l): (03 _—1%)’ (
(1,0),
in this order (see figure 1). Note that this set S is a proper bounded star set.

It is clear from the figure that there is no point other than O with integral co-ordinates
in the interior of S. On the other hand § contains the square given by

|#[<1, |y]<1.

2, 2), (1, 1),
2, 2), (—1,1),
2,—2), (—1,—1),
2, — )’ (1’ “1)’

(
(—
(—
(

Consequently A (S) = 1.

t Such frames have been discussed in detail by Ollerenshaw (1944, 19455).
1 Rogers (19475, theorem 1).
11-3
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88 C. A. ROGERS ON THE

We prove that A(S) = 1. Consider any lattice with d(A) <1} and with no point other
than O in the interior of S. As d(A) <14, there is a point other than O of A in the interior of
the parallelogram with vertices at the points + (1, %), 4+ (—1,24). Since there is no point
other than O of A in the interior of S, it follows that there is a point X; of A with co-ordinates
(x1,91), where =0, y=1, x+y <li.
Similarly, there is a point X, of A with co-ordinates (x,,y,), where

X =1, Y,<<0, xy—y,<14.
As the point X; + X, is a point of A and
1 <xl"l_x2<2: 21—<y1 +?/2< l%a

this point is not an inner point of S, and we must have

Y +Yy =%+ %y

Ficure 1

Similarly the point X, —X| is not an inner point of § and
Xg— %= — (YY)
But these last inequalities imply that
22, =2y = (%1 +%2) — (Y1 +42) — (42— 7)) — (%,—x,) <O.
Consequently #; = y, = 0 and using these results
Y1=%y  X2Y).

Hence x, = y, and the points (0,y,), (#,,0) are points of A. The determinant of the lattice
generated by these points is i< (13)2<2kd(A)
1 2) ~X“~4 N
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REDUCTION OF STAR SETS 89

But the mid-point (4y,, 1y,) of (0,y,) and (y;, 0) is in the interior of S. Thus A is generated
by the points (0,y,), (¢;,0). Now we have shown that every lattice A with d(A) <14, either
has a point other than O in the interior of §, or is a multiple of the lattice of points with
integral co-ordinates, in which case A has points other than O on the boundary of §. This
proves that A(S) >14. But it is easy to verify that, if ¢ is sufficiently small and positive then
the lattice generated by the points

(1+2¢,1+2¢+€%), (0,154 3¢)

has determinant 1}(1+2¢)? and has no point other than O in S. Hence A(S)<13. This
completes the proof that A(S) = 13.

APPENDIX 2. A STAR DOMAIN CONTAINING NO IRREDUCIBLE
STAR DOMAIN WITH THE SAME DETERMINANT

In this appendix we given an example of a bounded star domaint § with the property
that, if §* is any star domain contained in § with A(S") = A(S), then there is a star domain
$” properly contained in S’ with A(S") = A(S") = A(S). Before we construct this example
it is convenient to find the critical determinant of a certain set S,

|

Ficure 2

Let S, be the closed set containing the origin O and bounded by the curves given para-
metrically by:

x=2—1 y=0, (0<i<1);

x = cos 0, y =sind, (0<f<cos1});

x = 1(15) cosecg—2cos¢, y=2sing, (cos~!E<g<cos™1});
x = 2cos/, y=2sinf, (cosTli<l<m);

T A star domain is a two-dimensional star body.
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90 C. A. ROGERS ON THE

and the corresponding curves obtained by rotating these curves about O through two right
angles (see figure 2). The third of these curves is not very simple, and needs some investiga-
tion. Itis easy to verify that for this curve

x24y? = 1_ {1 +(J(?5) —cot ¢)2},

ey_v_J(;5) {( ot f— J(w))z_%;.

Thus, as ¢ increases from cos~! Z to cos™! (4/./(81)), cot$ decreases from 7/,/(15) to 4/./(15),
x¥2+4y? increases from 1 to 116, and x/y decreases from 1/,/(15) to —1/8./(15); and as ¢
increases from cos™!(4/,/(31)) to cos~!%, coté decreases from 4/./(15) to 1//(15), x>+ y?
increases from 115 to 4, and x/y increases from —1/8,/(15) to 1//(15).

We prove that A(S,) = £./(15). In the first place the lattice A, generated by the points
(0,2) and (%./(15), ) has no point other than O in the interior of S, and for all ¢>0 the
lattice (1+¢) A, has no point other than O in ;. Hence A(S;) <%./(15). Now suppose that
A is any lattice with no point other than O in the interior of S, and with d(A)<{./( 15)
Then there is a point other than O of A in the circle

x24y2<4,

since the critical determinant of this circle is 2./83>1./(15). So by rotating A clockwise
through a suitable angle we obtain a lattice A, which has no point other than O in the
interior of S, which has a lattice point with co-ordinates (£, 0) satisfying 1 <£< 2, and which

has determinant d(A,) = d(A) <3J(15).

Write @ =sin~! “/(%;) = cos™! &%_;15—)

Then cos~!Z<a<cos™1 4,

since 1 << 2. Write f— sin"! f‘_'%%ﬁ .

Then there are an infinite number of points of A; at a distance £ apart on the line / with
equation y— E{%L) _ 2sing.

As d(A,) <}(15), we h
s d(A;) <$./(15), we have ﬂgsin_lg/_(i?_):a.

If § were less than or equal to cos™! &, the line / would meet the interior of S, in an interval

of length 2cos /(1 —4sin2f) = 2cos f+./(4 cos? f—3)
> 2(3) +/{43)*—3}
= 2>¢.

This is impossible as every interval of length greater than £ of / contains a point of A;. Hence

cosT1I<f<a<cos™'},
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REDUCTION OF STAR SETS 91
and the line / meets the interior of .S, in an interval of length
+./(15) cosecf=1%./(15) coseca = §.

This length is greater than £ unless « = £. Thus we must have « = f#; and A, is generated by
the points (}./(15) coseca, 0) and (—2cosa, 2sina), where cos™!F<a<cos™!'1. Now we

have d(A) = d(A)) = 1./(15).
Y

Ficure 3

As A, was obtained from A by a rotation about O, it is clear that either
cosT1i<a<cos7!%

and A = A, is the lattice generated by the points (}./(15) coseca, 0), (—2cosa, 2sina) or
@ = cos™1 1 and A is the lattice generated by the points

(cosb,sinf), (—4cosf—4%,/(15)sind, —4sinf+4./(15) cosb)

for some f with 0<A<cos~1}. It is easy to verify that the only lattice A, which is of one of
these forms, and which has a lattice point on the circle

x2+y2 = 1%‘%3 (36)
is the lattice generated by the points

Av61,9, (712 (Gr)- (37)

We have now proved that A(S;) = §./(15), and that, tf A is any lattice with d(A) <}./(15)
having a lattice point on the circle (36) and having no point other than O in the interior of S,, then A
is the lattice generated by the points (37).
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92 C. A. ROGERS ON THE
Take § to be the star domain bounded by the curves given parametrically by:
x = cosd, y =sind (0<i<y—e);
x= (14+¢)cos (y—e+te), y=(l+8sin(y—e+t) (0<t<);
x = 2cos/, y = 2sinf (x<0<inm)

and the reflexions of these curves in the x-axis, the y-axis and both axes, where
x=hoos

and ¢ is a suitable small positive angle (see figure 3). Let S, be the set obtained by rotating
Sy clockwise about O through an angle ¢. Then it is clear that § contains the set S,. Hence

we have AS)ZA(S,) = A(S,) = $/(15).
But the lattice generated by the points
| (1,0) and (34/(15))
has determinant {,/(15) and has no point other than O in the interior of §. Consequently
A(S) = 3J(15).

Let $” be any star domain contained in § with A(S”) = A(S). To prove our result, we sup-
pose that there is no star domain $” properly contained in §” with A(S”) = A(S") = A(S),
and we obtain a contradiction. Then §’ is irreducible among the star domains. It is easy
to verify that the points given parametrically by

x=-cosl, y=sinfd (0<O<2m)
and by x=2cosl, y=2sind (y+e<O<m—y—e)
are irreducible points of §. Consequently S contains all these points, and in particular the
points (cos (y—¢),sin (y—¢)) and (2cos (x+¢),2sin (y+¢)) are on the boundary of §.

These points on the boundary of §” have polar co-ordinates (1,y—e¢) and (2, x+e¢). As &’
is a star domain it follows that there is a point X, = (x,, y,) with polar co-ordinates (7, ¢,),

satisfying r o= J138, y—e<f,<y-te

which is on the boundary of §’. Since S’ is an irreducible star domain, it follows by a result

of Mahler (19465, theorem C) that there is a critical lattice A, of §” with X, as a lattice point.
Now the point (+./(81) cos (y+¢€), —%./(31) sin (y+¢)) is an inner point of §’, as the point

(2cos (y+¢), —2sin (x+¢)) isa boundary point of §’. Thus A, is a lattice with d(A,;) = £./(15)

with a lattice point X, on the circle (36), but which does not have the point

(1/(31) cos (x+¢), —1/(31) sin (y+e))
as a lattice point. It follows from the result italicized above that there is a point other than
0 of A, in the interior of S, .. As there is no point other than O of A, in the interior of the
star domain ", it follows that there is a point X, with polar co-ordinates (7, 0,), satisfying
1<72<23 X"6<62<X+€:
which is an inner point of S, ,,. Provided ¢ is sufficiently small, the point X is not in S, ,

and so the points X, and X, are distinct. Thus, provided ¢ is sufficiently small, the point
X,— X, is a point other than O of A,, which is in the interior of the circle

x2+y2<1
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and which is therefore an inner point of §’. Hence A, is not a critical lattice of $’. This
contradiction proves the required result.

I am very grateful to Dr Mahler for the interest he has taken in my work and for a number
of illuminating discussions of the subject of this paper. I am also grateful to the referee for
some useful suggestions.
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